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The effect of a magnetic field on the flow of a 
conducting fluid past a circular disk 

By W. CHESTERAND D. W. MOORE 
Department of Mathematics, University of Bristol 

(Received 6 December 1960) 

In  the previous paper (Chester 1961) it was shown that, for large values of the 
Hartmann number, the asymptotic solution for the flow past a body of revolution 
has a discontinuity on the surface of a cylinder which circumscribes the body. 
The flow in the region of this discontinuity is now investigated in more detail 
when the body is a circular disk broadside-on to the flow. It will be shown that 
there is actually a region of transition whose thickness is O(lxI*/M-f), where 
x is the axial distance from the disk and M is the Hartmann number. This region 
is thin near the disk, but gradually thickens until it merges into the over-all 
flow field for z = O(M) .  

The leading terms in the expression for the drag are given by 

D M?T Is;; = 8 (1 +$) , 
where D, is the Stokes drag. 

1. Introduction 
We consider here a special case of the problem investigated in the preceding 

paper (Chester 1961, henceforth this paper is denoted by C). The same approxi- 
mations are assumed to be valid, and the body is taken to be a circular disk of 
radius a, with its axis parallel to the uniform streaming motion at infinity. It 
will be shown that the mathematical problem for this particular case can be 
discussed in greater detail than the more general arguments of the previous 
investigation allowed. In  particular the properties of the shear layer, which for 
M 1 must exist at the periphery of the circumscribing cylinder, can now be 
discussed, and this is the main purpose of this paper. Since it has been shown 
that the flow field for large values of the Hartmann number is insensitive to the 
detailed shape of the body, it may reasonably be assumed that the results also 
describe the situation for a more general class of bodies. 

2. The basic equations 

(C 17), namely 
The non-dimensional velocity and pressure are given by equations (C 14)- 

(1) V = i + e M x V 4 ,  + e-MXV& 
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where v2+, + M-1 = 0, ax 
V2q5,-M-' a+ = 0, 

ax 

(3) 

(4) 

and the length parameter used in the definition of M is now the radius of the disk. 
Because of symmetry the radial component of V must be zero on x = 0, and this 
implies that q51 + = 0 on x = 0. Thus (q51 + e-Mx$2) satisfies the equation 

( W  + M :;) ($1 + e - ~ z q 5 ~ )  = 0, (5) 

and is zero on x = 0. It is therefore identically zero, and so we write 

q5 (6) 

say, where 2m = M and (VZ-m2)q5 = 0, (7) 
V = { 1 - 2mg5 cosh mx} i + 2 sinh mxVg5, (8) 

e m s  = - q52 e-m = 

- P = 2-coshmx-2mq5sinhmx. aq5 
2m ax (9) 

The remaining boundary conditions to be applied are that 

V = o for x = o (7 = (y2+z2)* < I}. 

Also, it  is consistent with the equations and boundary conditions to look for a 
solution such that q5 is symmetrical, and hencep is anti-symmetrical, about x = 0. 
Since p is also continuous for 7 > 1, we must have 

p=O for x = O  ( 7 > 1 ) .  

In terms of q5, these boundary conditions imply that 

I 1 
M g5 = - for x = o (7 < I), 

for x = 0 (7 > 1). 9 = o 
ax 

3. Approximate solution for large Hartmann number 

closed surface S, may be written 
Any solution of (7), which is continuous together with its derivatives inside a 

where n is the inward-drawn normal to S ,  P is a point within S,  and Gis another 
function satisfying the same conditions as q5 save that, near P,  G N p-l where 
p is the distance from P. If, in addition aGpn = 0 on S ,  then G is called the Green's 
function for this particular problem and 

30-2 
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When S is the plane x = 0, together with a large hemisphere in the positive 
half-plane on which the integral tends to zero as the radius tends to infinity, then 

exp [ - m{(x - x0l2 + (Y - Yo)2 + (2 - z0)2)41 
{(x - x0Y + (Y - YOl2 + (2 - zo)21+ 

G =  

exp [ - m{(x + x0l2 + (Y - Yo)2 + (2 - z0)2I+l, 
(13) + 

where P is the point (xo, yo, zo). 
{(x + xo)2 + (Y - Yo)2 + (2 - zo)214 

a$ 
ax 

Thus, if 
- = x(y,z) on x: = 0, 

we have, omitting the suffix, 

Consider now the argument used in C. We note first that, by (lo), x = 0 
except on the surface of the disk. Hence, for large m, em 4 is exponentially small 
unless a line through (x, y, z )  parallel to the x-axis meets the surface of the disk. 
If it  does, then the sensible contribution to the integral comes from the neigh- 
bourhood of the point (0, y, z).  Thus we write, approximately 

for points inside the cylinder circumscribing the disk. The argument then pro- 
ceeds by integrating over the whole plane - m < y’ < m, - m < z‘ < m. 
This gives 

and since, by (lo), 

1 
$@, Y, 4 = ----X(Y, m 4, (16) 

1 
2m 

$ = -  

we have, finally, x = - 4 and so 

for x = o  

e-m 
1 

2m 
$ = -  for x > 0. 

In  particular, by (9), p = - 2m, which agrees with the result in C. 
The argument fails for points near the surface of the circumscribing cylinder. 

It makes x discontinuous at the edge of the disk, and the variation of x in this 
region will affect the integral in (14) significantly if (y2+z2) is close to unity. 
However, when m is large, any point for which this is true must lie within a 
distance O(m-l) from the surface y2 + z2 = 1, otherwise the exponential factor in 
the integrand of (14) will be small enough to make the error in x unimportant. 
(This is true only for x: < M .  Further comment on this point will appear later.) 
On such a length scale, the radius of curvature of the edge of the disk is large, and 
the previous argument can be refined by replacing the disk by a semi-infinite 
plane. The edge of this plane is to be tangential to the disk at the point of its 
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edge nearest the point (x, y ,  z )  at which $ is being evaluated. It is sufficient to 
consider only points (2, y ,  0); the value of $ at other points is then deducible from 
symmetry. The disk is then replaced by the semi-infinite plane x = 0, y < 1. 

To return to the original equations, the problem now presents itself in the 
following form. A two-dimensional solution of (V2 - m2)  $ = 0 is required under 
the boundary conditions 

1 
M $ = -  f or x = O  ( - c o < y < l ) ,  

ax 
3=0  for x = o  ( 1 < y <  co). 

We also require that $ + 0 at infinity, except for x = 0, y --f - 00. This last 
qualification is necessary because of the artificial boundary condition now im- 
posed on the plane x = 0. This will not incur any serious error since we are inter- 
ested in the solution only in the vicinity of y = 1. 

Problems similar to this have been familiar in diffraction theory for some time 
(Gunn 1947; Chester 1950), and it is not difficult to derive the appropriate solution 
in the present case. 

We first substitute x = rcos8, (y  - 1) = rsin8, so that the two sides of the 
semi-infinite plane become 8 = - +n, 8 = @r. Then the equation 

These solutions are most easily obtained by transforming to parabolic co- 
ordinates (Lamb 1932; Gunn 1947). If the various possible solutions are com- 
bined, it is found that the appropriate function satisfying 
conditions is 

all the boundary 

This is the unique solution of the problem as presented. It is continuous in the 
whole plane, but a$/ax is discontinuous across x = 0,  y < 1. On the plane x = 0, 
4 is essentially zero for y > 1 and 1/2m for y < 1 with an error which is exponen- 
tially small except near y = 1. There 4 = 1/2m and is continuous in its neigh- 
bourhood. Also a$/ax = 0 for x = 0,  y > 1 ,  and for y < l , B  = -in, 

Thus a$/ax = - 4  with an error which is exponentially small except near 
y = 1 where a$/ax has an integrable singularity. It is also discontinuous across 
x = 0, y < 1 ,  taking equal and opposite values at corresponding points on the 
two sides. 
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Away from the disk, say for x > 1, equations (8) and (9) show that the velocity 
and pressure are given asymptotically by 

i V - i - e2m V ( e - m  $), 

p/2m - e 2 m -  (e-mx 6). a 
ax 

Now, from (19) 

e-Aa dh, 

which shows that there is a region of sharp transition in the neighbourhood 
of 6 = 0, across which p / M  and the x-component of (V - i) change rapidly from 
- 1 (6 < 0) to 0 (6 > 0). The y-component of V is exponentially small everywhere 
save in the region of transition. This region contains the points for which 
mrsin2Jj3 is not large, and so is roughly parabolic in profile with thickness 
O( \x/*/M*) (by symmetry there is a similar region on the negative side of the 
plane x = 0). Thus it is thin where 1x1 = O(M)  but gradually thickens until it  is 
smeared out completely for 1x1 = O ( M ) .  

When the solution is applied to the circular disk, the co-ordinate r is to be 
interpreted as the distance from the field point considered to the nearest point 
on the edge of the disk, the angle 6 is the inclination of this line to the x-axis. 
Some comment is also necessary on the validitv of the solution when applied 
to the disk problem. It is correct only in the shear layer, and only where that 
layer is thin, so that the effects of curvature are of secondary importance in 
determining the nature of the flow. It is not really correct to regard it as extending 
beyond this region, although for x << M ,  it  does agree with what the results of C 
would lead one to expect. 

The situation resembles that in boundary-layer theory. The equations of that 
theory are assumed valid in a thin region of the flow, and outside this region it is 
assumed that there is a known main stream flow. The latter is used as a boundary 
condition for the edge of the boundary layer, and it is a common procedure to 
apply this boundary condition at  infinity. In  the present problem the ‘main 
stream flow ’ can be thought of as that given by the more elementary theory of C, 
both inside and outside the circumscribing cylinder. This provides the boundary 
conditions at infinity for the problem of the semi-infinite plane. 

The breakdown of the solution for large values of x also has its analogue in 
boundary-layer theory and can be explained by the fact that the radial scale of 
length in the transition layer eventually becomes comparable with the length 
scale in the other directions. Alternatively by reference to (14) it will be seen 
that as r = (x2+ y2+z2)* increases, the sensible contribution to the integral 
depends more and more on the over-all value of x, rather than its value in some 
small neighbourhood of the disk. In  fact, for r M it is readily seen from (14) 
that 
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where the integration is now taken over the plane of the disk. If this value of 
4 is substituted in (8), it follows that the perturbation velocity components tend 
to  zero exponentially at infinity in every direction except the x-direction, where 

Finally we may add that a uniformly valid solution for Q, could be obtained 
from (la), since the value of ~(y‘, 2’) on the disk is now known. The results will 
not be given since all the essential information has already been obtained from 
the ‘ boundary-layer ’ theory. The qualitative picture is essentially that given 
above. There is a thin shear layer in the neighbourhood of the circumscribing 
cylinder, which gradually thickens as 1x1 increases until eventually it fuses into 
the main stream flow for 1x1 = O(M) .  

The drag for large values of M is easily obtained by integrating the pressure 
(given by (20),  with y now interpreted as the radial co-ordinate) over the surface 
of the disk. Note that the pressure over the interior of the disk contributes a 
term of more significant order to the integrated pressure than the contribution 
from the edge effect. Now the pressure over the interior is in error by an exponen- 
tially small amount. Near the edge the error is more significant, but of less 
significance than the terms already displayed in (20).  This means that (20) should 
yield the first two leading terms in the drag. When evaluated, they give 

= 2Mr( 1 + 2 /M) .  

4. The validity of the basic equations 
In C the equation of motion is derived in the form (C 9) 

R ( V .  V) V = - V p  + V2V + N2(V A i )  A i, (25) 

and the whole of the analysis is based on the assumption that the term on the left- 
hand side of this equation may be neglected. When M < 1, this is valid provided 
R < M .  For the term M2(Vhi )  hi modifies the Stokes solution by a factor 
(1 + O(M)}  (Chester, 1957) whereas the term R ( V .  V) V modifies the solution by a 
factor (1 + O(R)} .  

1, and the significant 
region is then the shear layer. From (19) one can deduce that in this layer, 

We consider here the validity of the assumption for M 

the axial component of velocity = O( l), 
the radial component of velocity = O(M-*), 
the pressure = O(M),  
alax = OU), 
a/% = O(Mh). 

It then follows that the four terms in (25) have respectively the following orders 
of magnitude for the axial component of that equation, 

R ,  M ,  M ,  0 
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and, for the radial component, 
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RM-4, M8, M ,  M3. 

Thus the same condition, namely R < M ,  is also required for M $ 1. It is worth 
noting that, for M 9 R and M 9 1, equation (25)  simplifies to 

where V = (1 + V,,V,). One may verify that the approximate solutions do, in fact, 
satisfy these equations. Note also that the second of these equations explains the 
mechanism by which the large pressure gradient across the shear layer is main- 
tained by balancing the Lorentz force. 
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